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Dispersion Characteristics for Arbitrarily

Configured Transmission Media
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Abstract—A method for calculating the propagation character-

istics of electromagnetic waves along arbitrarily configurated trans-
mission media composed of conductom and/or inhomogeneous
dielectrics is presented. The method is based on the equivalence
principle. The dispersion characteristics of the fundamental as well as
higher order modes can be obtained by this method. To demonstrate

the validity of this method, results of the propagation constant of a

shielded microstrip line calculated by this method are compared with

other numerical results available in the literature. New results for the

dispersion characteristics of a channelized suspended microstrip are

presented.

I. INTRODUCTION

The success of microstrip in microwave integrated-circuit appli-

cations has caused considerable interest in the calculation of

dispersion characteristics of these lines. A number of different

techniques [1]–[4] have been employed to obtain dispersive effects

of open and shielded microstrip-like transmission lines with rec-

tangular cross sections. Since microstrip becomes 10SSY and

difficult to fabricate at higher microwave frequencies, attention

has focused on configuring new transmission media. In this short

paper we present a technique for calculating the dispersion char-

acteristics of electromagnetic wave propagation along guiding

structures consisting of a finite number of uniform dielectric re-

gions of arbitrary cross sections within a conducting enclosure.

Conducting strips may also be present at the interface between

two dielectric regions. It is assumed that the thickness of the

conductors is negligible.

In Section II the problem is formulated on the basis of the

equivalence principle. A set of linear integro-differential operator

equations for the equivalent current sources are obtained by

applying the appropriate boundary conditions at each interface.

In Section III the method for converting the operator equations

into a matrix formulation by the method of moments [6, pp. 9–11,

14, 15] is sketched. The numerical methods used to determine the

propagation characteristics and results for specific examples are

described in Section IV.
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II. INTEGRO-DIFFERENTIAL EQUATIONS

Fig. 1 shows the generic cross section of the guiding structure

under consideration. N is the number of discrete, homogeneous,

isotropic, dielectric regions inside the conducting enclosure. The

heavy lines on the interface between two dielectric regions denote

conducting strips. The electric (E) and magnetic (H) fields in each

region will be obtained by applying the principle of equivalence

[5]. In accordance with this principle, the dielectric medium of the

@h re~on (characterized by permittlvity 8P) is fictitiously ex-

tended to fill all space and combinations of electric (P) and mag-

netic (kfP) surface current sources are conceptually placed on

the boundary SP of the pth region. Jp and Alp are to be determined

in such a way that E and Hare zero everywhere outside SP and are

identical to the fields EI’ and Hp at each point in the interior of the

pth region for the original problem shown in Fig. 1. This

procedure is repeated for each of the regions inside the conducting

enclosure. The current sources for the various regions are not all

independent because of the boundary conditions to be satisfied at

all the interfaces. Fig. 2 syrnbohcally shows the contour of the pth

region and the surface current distributions on it. &fp M taken to

be zero on the conducting segments of the boundary. Also shown

in Fig. 2 is a left-handed coordinate system with unit vectors +P,

fip, and 2. +P is tangential to the contour Cp (counterclockwise), fip

inward drawn normal to the region p, and 2 perpendicular to the

plane of Fig. 2. For two adjacent regions p and p’, we have

+P = —?P, and hP = — hP, on the portion of boundary common to

both the contours CP and Cp,. 2 is the same for all regions. Since F

and ikfp are surface currents, we have the relations

;p.~P=o

fip. P=o. (1)
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From the equivalence principle

P(p,z) = fi X Hp - (fl,Z)

fW’(p,Z) = – ij x EP- (~,Z) (2)

where Ep- and HP- denote, respectively, the electric and magnetic
fields at a point just inside the contour Cp.p is a position vector in

the transverse plane. In (2), p is on Cp.

From Maxwelt’s equations, the electric (Ep) and magnetic (Hp)

fields at any point in the cross section of Fig. 2 maybe written as

–.sPEP = V x Fr’ + j.sPcoAP+ EpV~~ (3)

–pOHP= –V xAP+jpOcoFP+pOV~$ (4)

where p = 1, 2, . . . . N. A r’ and C& are the vector and scalar poten-

tials, respectively, due to the electric current sources (~) residing

on the contour CP. Similarly, Fp and & are the vector and scalar

potentials, respectively, due to the magnetic current sources (W’)

residing along Cp. PO is the free-space permeability y. In (3) and (4) a

time dependence of e’mt has been assumed for the sources.

The potentials A, F, ~=, and rjm are given by

+i~~ Jp(p,z)G(k~R)~f
AP(P,ZJ) = ,LLOe ,, (5)

j w’(pj)qqqd.F(p,z,t) = epe+’o’ ,, (6)

W(f.z,t) = – (1/j0.5P)e’m’

J v Jp(p,z,t)qk,ll)dr (7)
c,

I.‘ V A4p(p’,z,t)G(k;R) dd (8)
CD

where R = Ip – p’ I is the distance between afield point (p) and a

source point (p’), k$ = \PO Ep COz + k~ll’z, and G(kj R) is the two-

dimensional Green’s function. If (~. 8P02 + k:) is positive, G(x)

can be expressed in terms of lf~z)(x), the zero-order Hankel func-

tion of the second kind, as

G(x) = (1/4j)H~2)(x) (9)

while for (pEr C02+ k:) negative

G(x) = (1/2rt)Ko(x) (lo)

where KO (x ) is the zero-order modified Bessel function.

The gradient operators V and V operate on the field points and

the source points, respectively. The operator V may be written as

(11)

where V, is the tangential part of the vector. The electric (Ep) and

magnetic (Hp) fields in the pth region can be calculated by sub-

stituting (5)–(10) in (3) and (4). We assume that the sources vary

as e ‘k:’ along the z-axis. For lossless propagation kz = i~. By

using the one-dimensional divergence theorem terms like

(VL ~JP)G in (7) and (8) may be expressed in the form F cwG.
Furthermore, we have

~G(k~R) = -V, G(kfR)= -~k;w (12)

where x = k$ R and R = (p – p’)/R is the unit vector from the

source point (p’) to the field point (p). Using these relations and

after some vector manipulations the tangential components of EP

1139

and H’ at a point P- just inside the contour Cpmay be expressed

in the following form:

~:-=j~o@[-l~fJ:G(x)\l+&~ ‘

+% I dz’.J#? ~G’(x)
P’

+ ~ [ Ci’r’fi’ RG(.X)IW
k. . 1

E:- =jyOca
[1

‘d/

k, k; ~
~ z “ RG’(x)J:,
CpkO

- [ d/J: [(? ~;) (G(x) + &G’(x)j
P

(13)

(14)

RG’(x)

(15)

[1
k; .

If:- = (po&o)’%o ~ dz’J;,(ii . R)G’(x)
0.

Here we have replaced the variable M by ~, where

MP = –j(~o/po)112&fp (17)

so that ~P is of the same dimension as Y’ :P = &p/cO is the rela-

tive dielectric constant of the pth region. k. = COWo &o is the

free-space wave vector. (fi,;,;) and (ii’, ?,2’) denote unit vectors at

the field point (P) and the source points (P’), respectively. Also

G(x) = i3G(x)/tJx and G“(x) = d2G/dx2 with x = HR.
If the dielectric medium of the pth region is fictitiously extended

to all space, then the tangential components of the fields at a point
P+ just outside the contour CF are given by (see (2))

E~+ = E~- +j(po/:0)1/2fig

E\+ = E;- – j(po/&o)l/2fi~ (18)

H;+ = Hg - – j(&o/po)112J~

H: = H!- +j(eo/pO)l’2J~. (19)
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Equations (13)-(19) for the tangential components of EP and W’

hold for each of the dielectric regions p = 1, 2,..., N.

The following boundary conditions are now imposed for each

of the N dielectric regions in the problem at hand. On the con-

ducting surfaces

E:- =0

~f- = ()

and on the dielectric–dielectric interfaces

E7+ = O

E:+ = ()

E:- – E:;- = ()

E[- + E$’- = ()

H:- _ H::- = O

Hf - + H~;- = () (22)

where E and H are given by (13)–(19). The region p’ is adjacent to

the pth region in the structure shown in Fig. 1. On the portion of

the contour common to regions p and p’, ? = – 2, and 2 = 2. In

(20)-(22), p = 1,2, , N. Also for each p in (22), p’ = 1,2, ~., Np

where Nu is the number of regions adjoining the pth region.

On substitution of (13)-(19) in (20)-(22), we obtain the set of

integral equations to be satisfied by the current sources ,F’,MP in

all regions. .lP and Mp in the different regions are not all independ-

(20)

(21)

ent because of the boundary conditions

(22) it is seen that

MP= .jfp’

JP = _ JPr

on the dielectric–dielectric interfaces.

in (22). From (2) and

III. MATRIX FORMULATION

The propagation characteristics are determined by solving the

system of (13 )–(22 ). These equations are reduced to matrix form

by the method of moments [6, p. 11]. The moment solution

employed here consists of using pulse expansion functions for a

basis and point matching for testing. Upon invoking this solution

it is-found that the matrix equations for all the N different dielec-

tric regions and for all distinct pairs of adjacent regions can be

manipulated in such a way that the current sources on the dielec-

tric segments are expressed in terms of ~, the current sources on

the conductor segments and then a matrix equation involving S

only is obtained:

HS = O.

In (23), ,$ is a one-column vector with M

M=2 ~nf
P=l

(23)

components given by

(24)

and H is an M x M matrix. Here, n: is the number of conductor

segments on Cp, obtained by subdividing Cp into straight-line seg-

ments (not necessarily of equal length) for the moment solution.

The elements of H are functions of only the operating frequency,

phase constant, configuration geometry, and material parameters

for a given structure. If the cross section of the guiding structure is

symmetrical about an axis in the transverse plane, then the prob-

lem can be reduced to modes having either even or odd symmetry

with respect to this axis. Because of the resulting smaller dimen-

sion of the matrix H for each of these modes, the computation

time is reduced.
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IV. NUMERICAL RESULTS

Since the components of the vector ~ in (23) are all independ-
ent, a solution exists if and only if

det I If(fjtZ) I = O (25)

where f = co/2n is the operating frequency and k= is the phase

constant in the direction of propagation. For a given~ the propa-

gation constant is determined by finding kz such that (25) is

satisfied. There will be several values of kz for each ~correspond-

ing to different order modes. The cutoff frequencies for the differ-

ent modes may be obtained by searching for ~ such that

det I H I = O when k= = O. In general, det IH I is complex. So (25)

implies that

Re [det H] = O (26)

Im [det H] = O. (27)

The expansion set used to obtain (23) is only an approximation to

the exact current sources. Due to this approximation, the values of

k= needed to satisfy (26) and (27) are, in general, slightly different.

Therefore, an adequate approximate solution is obtained by re-

quiring that

Idet (H(JkZ)) I = minimum. (28)

In actual numerical calculation, a few spurious roots occur in the

solution of (25). The actual roots are identified by the following

three criteria: 1) k: that gives the deepest local minimum in

Idet H 1,2) real and imaginary parts of det H should change sign

near k:, and 3) the difference in the values of kz satisfying (26) and
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of the conducting strip and H—height of the channel above it.

(27) is smallest. Also, the spurious roots shift appreciably when

the number of segments in a contour is changed [1].

To illustrate the accuracy of the present method, results

computed for a shielded-microstrip cross section shown in Fig. 3

are plotted in Fig. 4. The calculated dispersion characteristics of

the fundamental and higher order even-symmetry modes agree

reasonably well with the theoretical results in [2] and [4].

Although only even-symmetry modes are shown in Fig. 4, the

method is applicable to all types of modes, symmetric or

otherwise.

We next show the dispersion characteristics of a channelized

suspended microstrip [7]. The cross section of the structure is

shown in Fig. 5. The channel located above the conducting strip

helps suppress higher order mode propagation. The structure has

two additional useful features: 1) reduced dissipation loss [8], and

2) easier fabrication due to wider strip widths for SO-Q impedance

level. The calculated dispersion curves are shown in Fig. 6. The

lower three curves represent the fundamental mode for three dif-

ferent values of W/H (= 1, 3, 4), the ratio of the width of the

conducting strip, and the height of the channel above it.

The upper two curves are two higher order (even symmetry)

modes for W/H = 3. The associated TEM phase constants in air

and dielectric material (s, = 10.0) are shown in the figure for refer-

ence. As can be seen in Fig. 6, the phase constants for the fun-

damental mode at lower frequencies are nearer to that in air and

at high frequencies go towards the values for the dielectric

medium. The cutoff frequencies for the next two even-symmetry

higher order modes are 17.2 GHz and 27.4 GHz, respectively,

V. DISCUSSION

The computer-aided analyses described in this short paper can

determine the dispersion and higher order mode characteristics

for a wide variety of transmission structures having different

geometries and material parameters. The analysis includes the

effects on propagation due to an arbitrarily shaped conducting

enclosure, The analysis presented here can provide design infor-

mation for planar transmission media which employ composite

conductor and/or dielectric materials, The analysis can be readily

extended to determine other propagation characteristics such as

electric and magnetic field distributions, modal currents, im-

pedance parameters, and dissipation losses.
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