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Dispersion Characteristics for Arbitrarily
Configured Transmission Media

ACHINTYA K. GANGULY AND
BARRY E. SPIELMAN, MEMBER, IEEE

Abstract—A method for calculating the propagation character-
istics of electromagnetic waves along arbitrarily configurated trans-
mission media composed of conductors and/or inhomogeneous
dielectrics is presented. The method is based on the equivalence
principle. The dispersion characteristics of the fundamental as well as
higher order modes can be obtained by this method. To demonstrate
the validity of this method, results of the propagation constant of a
shielded microstrip line calculated by this method are compared with
other numerical results available in the literature. New results for the
dispersion characteristics of a channelized suspended microstrip are
presented.

1. INTRODUCTION

The success of microstrip in microwave integrated-circuit appli-
cations has caused considerable interest in the calculation of
dispersion characteristics of these lines. A number of different
techniques [1]-{4] have been employed to obtain dispersive effects
of open and shielded microstrip-like transmission lines with rec-
tangular cross sections. Since microstrip becomes lossy and
difficult to fabricate at higher microwave frequencies, attention
has focused on configuring new transmission media. In this short
paper we present a technique for calculating the dispersion char-
acteristics of electromagnetic wave propagation along guiding
structures consisting of a finite number of uniform dielectric re-
gions of arbitrary cross sections within a conducting enclosure.
Conducting strips may also be present at the interface between
two dielectric regions. It is assumed that the thickness of the
conductors is negligible.

In Section II the problem is formulated on the basis of the
equivalence principle. A set of linear integro-differential operator
equations for the equivalent current sources are obtained by
applying the appropriate boundary conditions at each interface.
In Section IIT the method for converting the operator equations
into a matrix formulation by the method of moments [6, pp. 9-11,
14, 15] is sketched. The numerical methods used to determine the
propagation characteristics and results for specific examples are
described in Section IV.
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II. INTEGRO-DIFFERENTIAL EQUATIONS

Fig. 1 shows the generic cross section of the guiding structure
under consideration. N is the number of discrete, homogeneous,
isotropic, dielectric regions inside the conducting enclosure. The
heavy lines on the interface between two dielectric regions denote
conducting strips. The electric (E) and magnetic (H) fields in each
region will be obtained by applying the principle of equivalence
[5} In accordance with this principle, the dielectric medium of the
pth region (characterized by permittivity ¢,) is fictitiously ex-
tended to fill all space and combinations of electric (J?) and mag-
netic (MP) surface current sources are conceptually placed on
the boundary S, of the pth region. J? and M? are to be determined
in such a way that E and H are zero everywhere outside S, and are
identical to the fields E? and HP at each point in the interior of the
pth region for the original problem shown in Fig. 1. This
procedure is repeated for each of the regions inside the conducting
enclosure. The current sources for the various regions are not all
independent because of the boundary conditions to be satisfied at
all the interfaces. Fig. 2 symbolically shows the contour of the pth
region and the surface current distributions on it. M7 1s taken to
be zero on the conducting segments of the boundary. Also shown
in Fig. 2 is a left-handed coordinate system with unit vectors %,
n,, and z. 7, is tangential to the contour ¢, (counterclockwise), 71,
inward drawn normal to the region p, and z perpendicular to the
plane of Fig. 2. For two adjacent regions p and p’, we have
T,= —1%, and i, = —1, on the portion of boundary common to
both the contours ¢, and ¢, Z is the same for all regions. Since J?
and MP are surface currents, we have the relations

hy - MP =0
fy - J7 =0, (1)
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From the equivalence principle
Plpz)=n x H? (p,z)
M (p,z)= —i x E*(p.z) )

where EP~ and HP~ denote, respectively, the electric and magnetic
fields at a point just inside the contour c,. p is a position vector in
the transverse plane. In (2), p is on c¢,.

From Maxwell’s equations, the electric (E?) and magnetic (H?)
fields at any point in the cross section of Fig. 2 may be written as

~e,E? =V X P + je,0A? + £, V? (3)
—UoHP = —V X AP 4 juoF? + 1oV, )

where p= 1,2, ---, N. A? and ¢? are the vector and scalar poten-
tials, respectively, due to the electric current sources (J*) residing
on the contour c¢,. Similarly, F” and ¢%, are the vector and scalar
potentials, respectively, due to the magnetic current sources (M?)
residing along ¢,. o is the free-space permeability. In (3) and (4) a
time dependence of ¢'“' has been assumed for the sources.

The potentials A, F, ¢., and ¢,, are given by

A%(p2t) = poe | P(p'2)G(kER) d (5)

Flpzt)=¢e,e™™™ MP p’:z G(kZR) d7’ 6
14 ¢ p

14

PE(p.zt) = —(1/jwe, )"

[ v P zn)GKER) dY (7)

€p

Dhp.zt) = —(1/joope)e™

| V- My 2)G(ER) d ®)
where R = |p — p’| is the distance between a field point (p) and a
source point (p'), k5 = |pos,w* + kZ|*2, and G(k5R) is the two-
dimensional Green’s function. If (uo¢,w* + k2) is positive, G(x)
can be expressed in terms of H{(x), the zero-order Hankel func-
tion of the second kind, as

G(x) = (1/4)HP(x) ©)
while for (ue, w* + kZ) negative

G(x) = (1/2m)Kofx) (10)

where K,(x) is the zero-order modified Bessel function.
The gradient operators V and V' operate on the field points and
the source points, respectively. The operator V' may be written as

o ’ Aa
V=Vitis (11)

where V, is the tangential part of the vector. The electric (E?) and
magnetic (HP) ficlds in the pth region can be calculated by sub-
stituting (5)-(10) in (3) and (4). We assume that the sources vary
as e %7 along the z-axis. For lossless propagation k, = if. By
using the one-dimensional divergence theorem terms like
(V.- )G in (7) and (8) may be expressed in the form J? ' V.G.
Furthermore, we have

: 50 G (X)

ViG(k;R) = ~V.G(kER) = — Rkt =+ (12)

where x = kZR and R = (p — p')/R is the unit vector from the
source point (p’) to the field point (p). Using these relations and
after some vector manipulations the tangential components of E?
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and H” at a point P_ just inside the contour ¢, may be expressed
in the following form:

2™ = jpow |~ [ drJ2G(x)

k2
14+ =2
+ épk%}
k, kP
g, k3

P

+

[ dvizt - RG/(x)

kb ¢ .
+ 2 | e RG/ (<)M (13)
o

(14)

_ K2\ o

+8F(1 +m) ‘ d‘[Mf,G(X)
ko k2
e

[ dvitzy - RG'(X)]
12 Ko 1 ea /
HP = (iogo) 2w o | dr'J2 (A - R)G'(x)
k
_ = rrept .7
ko [ dv'Jen - 1G(x)

k

ke
k(z)p , dvMET -

#) [G(x) T ép—’;gﬁ G’(x)}

el

Here we have replaced the variable M by M, where
MP = —j(zo/po) > MP

+g, | dvME {(% :

+ fg’% # - R)i - R) (16)

G"(x) —

(17)

so that MP is of the same dimension as J? - §, = ¢, /¢, is the rela-
tive dielectric constant of the pth region. kg = a)\/;—fos—o is the
free-space wave vector. (,7,2) and (7,7',2') denote unit vectors at
the field point (P) and the source points (P’), respectively. Also
G'(x) = 0G(x)/éx and G"(x) = 0*G/dx* with x = k5R.

If the dielectric medium of the pth region is fictitiously extended
to all space, then the tangential components of the fields at a point

P just outside the contour ¢, are given by (see (2))
EZ* = E2™ + j(uo/e0)"*M?

E?* = EP~ —]'(Ho/so)mf\z‘z7 (18)
H?™ = HP™ — jleo/o)"2J?
HP = H?™ + j(so/uo)"?JE. (19)



1140

Equations (13)-(19) for the tangential components of E¥ and HP
hold for each of the dielectric regions p =1, 2,---, N.

The following boundary conditions are now imposed for each
of the N dielectric regions in the probiem at hand. On the con-
ducting surfaces

El” =0
EF" =0 (20)
and on the dielectric—dielectric interfaces
EEF =0
EFt =0 (1)
EZ" —EZ " =0
EPF” +EF” =0
H:™ —HE™ =0
H™ + HY" =0 (22)

where E and H are given by (13)-(19). The region p’ is adjacent to
the pth region in the structure shown in Fig. 1. On the portion of
the contour common to regions p and p’, ' = —t,and 2’ = 2. In
(20)-(22), p= 1,2, -+, N. Also for cach pin (22),p' = 1,2, --, N,
where N, is the number of regions adjoining the pth region.

On substitution of (13)}-(19) in (20)-(22), we obtain the set of
integral equations to be satisfied by the current sources J?, M? in
all regions. J* and MP in the different regions are not all independ-
ent because of the boundary conditions in (22). From (2) and
(22) it is seen that

MP = —MP
J? = — g

on the dielectric-dielectric interfaces.

III. MATRIX FORMULATION

The propagation characteristics are determined by solving the
system of (13)-(22). These equations are reduced to matrix form
by the method of moments [6, p. 11]. The moment solution
employed here consists of using pulse expansion functions for a
basis and point matching for testing. Upon invoking this solution
it is-found that the matrix equations for all the N different dielec-
tric regions and for all distinct pairs of adjacent regions can be
manipulated in such a way that the current sources on the dielec-
tric segments are expressed in terms of §, the current sources on
the conductor segments and then a matrix equation involving §
only is obtained:

HS = 0. (23)

In (23), § is a one-column vector with M components given by

N
M=25Y n? (24)
p=1

and H is an M x M matrix. Here, n? is the number of conductor
segments on c,, obtained by subdividing ¢, into straight-line seg-
ments (not necessarily of equal length) for the moment solution.
The elements of H are functions of only the operating frequency,
phase constant, configuration geometry, and material parameters
for a given structure. If the cross section of the guiding structure is
symmetrical about an axis in the transverse plane, then the prob-
lem can be reduced to modes having either even or odd symmetry
with respect to this axis. Because of the resulting smaller dimen-
sion of the matrix H for each of these modes, the computation
time is reduced.
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Fig. 4 Dispersion characteristics for microstrip in a conducting box

IV. NUMERICAL RESULTS

Since the components of the vector § in (23) are all independ-
ent, a solution exists if and only if
det |H(fk;)| =0 (25)
where f= w/2z is the operating frequency and k, is the phase
constant in the direction of propagation. For a given f, the propa-
gation constant is determined by finding k. such that (25) is
satisfied. There will be several values of k, for each f correspond-
ing to different order modes. The cutoff frequencies for the differ-
ent modes may be obtained by searching for f such that
det |H| = 0 when k, = 0. In general, det | H| is complex. So (25)
implies that

Re [det H] =0
Im [det H] = 0.

(26)
(27)

The expansion set used to obtain (23) is only an approximation to
the exact current sources. Due to this approximation, the values of
k, needed to satisfy (26) and (27) are, in general, slightly different.
Therefore, an adequate approximate solution is obtained by re-
quiring that

|det (H(fk.)}| = minimum. (28)

In actual numerical calculation, a few spurious roots occur in the
solution of (25). The actual roots are identified by the following
three criteria: 1) k2 that gives the deepest local minimum in
|det H|, 2) real and imaginary parts of det H should change sign
near kP, and 3) the difference in the values of k, satisfying (26) and
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(27) is smallest. Also, the spurious roots shift appreciably when
the number of segments in a contour is changed [1].

To illustrate the accuracy of the present method, results
computed for a shielded-microstrip cross section shown in Fig. 3
are plotted in Fig. 4. The calculated dispersion characteristics of
the fundamental and higher order even-symmetry modes agree
reasonably well with the theoretical results in [2] and [4]
Although only even-symmetry modes are shown in Fig. 4, the
method is applicable to all types of modes, symmetric or
otherwise.

We next show the dispersion characteristics of a channelized
suspended microstrip [7]. The cross section of the structure is
shown in Fig. §. The channel located above the conducting strip
helps suppress higher order mode propagation. The structure has
two additional useful features: 1) reduced dissipation loss [8], and
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2) casier fabrication due to wider strip widths for 50-Q impedance
level. The calculated dispersion curves are shown in Fig. 6. The
lower three curves represent the fundamental mode for three dif-
ferent values of W/H (=1, 3, 4), the ratio of the width of the
conducting strip, and the height of the channel above it.
The upper two curves are two higher order (even symmetry)
modes for W/H = 3. The associated TEM phase constants in air
and dielectric material (¢, = 10.0) are shown in the figure for refer-
ence. As can be seen in Fig. 6, the phase constants for the fun-
damental mode at lower frequencies are nearer to that in air and
at high frequencies go towards the values for the dielectric
medium. The cutoff frequencies for the next two even-symmetry
higher order modes are 17.2 GHz and 27.4 GHz, respectively.

V. DISCUSSION

The computer-aided analyses described in this short paper can
determine the dispersion and higher order mode characteristics
for a wide variety of transmission structures having different
geometries and material parameters. The analysis includes the
effects on propagation due to an arbitrarily shaped conducting
enclosure. The analysis presented here can provide design infor-
mation for planar transmission media which employ composite
conductor and/or dielectric materials. The analysis can be readily
extended to determine other propagation characteristics such as
electric and magnetic field distributions, modal currents, im-
pedance parameters, and dissipation losses.
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